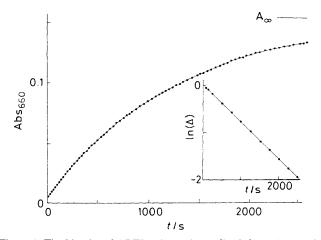
Hypervalent Iron-oxo Porphyrin Cation Radical Formation on Reaction of H_2O_2 with the Cytochrome-c-derived Haem Octapeptide Microperoxidase-8 (MP-8) in Aqueous Solution

Paul A. Adams and Richard D. Goold

MRC Biomembrane Research Unit, Dept. of Chemical Pathology, University of Cape Town Medical School, Observatory 7925, Republic of South Africa

The reaction between microperoxidase-8 (MP-8) and H_2O_2 has been investigated in aqueous buffer solution using the UV-vis spectrophotometric probe 2,2'-azino-bis(3-ethylbenthiazoline-6-sulphonic acid) (ABTS); evidence is presented for the intermediate formation of a hypervalent iron-oxo radical species analogous to compound I of the peroxidase enzymes.

The reaction between H_2O_2 and the haem-peptides derived from cytochrome-c, the microperoxidases (MP), has been little studied, despite the potential of such systems as chemical models for the peroxidase enzymes. Reaction of the undecapeptide (MP-11) with H_2O_2 exhibited extremely complex kinetics, with concomitant and complete oxidative degradation of the porphyrin macrocycle;¹ this presumably occurred by attack of H_2O_2 directly on MP-11, or on the iron-oxo complex presumed to be formed in the reaction.


A comprehensive investigation of the aqueous/aqueousorganic solution chemistry (including aspects of the peroxidasic reaction) of the octapeptide (MP-8) has recently been carried out by Marques and co-workers.^{2,3} They have demonstrated firstly, that MP-8 is >90% monomeric in aqueous solution at catalytic concentration levels ($5 \times 10^{-7} \text{ mol dm}^{-3}$), and secondly, that the fifth co-ordination position of the iron is occupied by the imidazole of His 18 (cytochrome-c sequence numbering), modelling the proximal histidine of the peroxidases. In the work reported here, we utilize the approach of Traylor *et al.*⁴ and Bruice *et al.*⁵ (whereby reactive oxo-radical intermediates are trapped as stable radical species) to demonstrate formation of a hypervalent iron-oxo complex, a peroxidase compound (cpd) I analogue, on reaction of H₂O₂ with MP-8. When H_2O_2 (0.02—3 × 10⁻⁴ mol dm⁻³) and MP-8 (10⁻⁷—10⁻⁶ mol dm⁻³) are mixed at pH 7.00 in the presence of 2,2'-azino-bis(3-ethylbenthiazoline)-6-sulphonic acid (ABTS) (0.1—5 × 10⁻³ mol dm⁻³) the emerald green ABTS⁺⁺ cation radical is formed. The kinetics of ABTS⁺⁺ formation were monitored at 660 nm and exhibited the following characteristics:

(a) In the H_2O_2 concentration range 2×10^{-6} to 3×10^{-4} mol dm⁻³, ABTS⁺⁺ formation follows a pseudo-first order rate law (Figure 1).

(b) As $[H_2O_2]$ is varied from 3×10^{-4} to 2×10^{-6} mol dm⁻³, ABTS⁺ formation increases from 30% theoretical [calculated using absorbance coefficient (Abs) ABTS⁺ = 14000 mol⁻¹ dm³ cm⁻¹ at 660 nm]^{6.7} and approaches 100% theoretical.

(c) Under conditions of constant [MP-8], variable $[H_2O_2]$ and vice versa, the initial velocity of ABTS⁺⁺ formation, V_i , varied in an accurately straight-line manner with $[H_2O_2]$ {or [MP-8]}. This implies a rate law of the form, d(Abs)/dt = k [MP-8] [H₂O₂]; k evaluated from the slope of the V_i vs. $[H_2O_2]$ or [MP-8] plots was determined to be 1700 (±30) mol⁻¹ dm³ s⁻¹ and 1720 (±50) mol⁻¹ dm³ s⁻¹, respectively.

(d) The pseudo-first order rate constant for ABTS⁺ formation at $[H_2O_2] = 1 \times 10^{-4}$ mol dm⁻³ was directly

Figure 1. The kinetics of ABTS⁺⁺ formation at $[H_2O_2] = 1.0 \times 10^{-5}$ mol dm⁻³. Increase in absorbance at 660 nm is shown, inset is the first-order kinetic plot of ln (Δ) vs. time. Pseudo-first-order rate constant = 7.70 (± 0.01) ×10⁻⁴ s⁻¹, pH = 7.00, T = 25 °C ± 0.2 °C, [ABTS] = 3 × 10⁻³ mol dm⁻³, [MP-8] = 2.5 × 10⁻⁷ mol dm⁻³. $\Delta = (A_{\infty} - A_{\rm t})/A_{\infty}$; A_{∞} corrected for Abs at t = 0 s.

proportional to [MP-8] in the concentration range 0–8 \times 10⁻⁷, *i.e.* doubling [MP-8] doubles k_{obs} .

(e) Addition of 0.1 mol dm⁻³ bromide ion to the system at $[H_2O_2] = 1 \times 10^{-4}$ mol dm⁻³ did not affect the kinetics of ABTS⁺⁺ formation. In particular the efficiency of ABTS⁺⁺ formation was not significantly affected {efficiency 50.7% at $[Br^+] = 0$; to 52.0% at $[Br^-] = 0.1$ mol dm⁻³}. Formate ion, a powerful scavenger of the hydroxyl radical, also had no effect on the kinetics of the reaction at formate concentrations of 0.05 and 0.10 mol dm⁻³.

(f) The pseudo-first-order rate constant for ABTS⁺ formation was found to be independent of [ABTS] in the range $2-5 \times 10^{-3}$ mol dm⁻³, with constant [MP-8]: 2.5×10^{-7} mol dm⁻³ and [H₂O₂]: 2×10^{-6} mol dm⁻³.

These observations are consistent with the following. (i) The rate determining step is the reaction of $Fe^{3+}MP-8$ with H_2O_2 [from (c)], the ABTS being oxidised to ABTS⁺⁺ in a very rapid reaction, subsequent to the rate determining step [from (f)]. (ii) Fe³⁺MP-8 is not saturated with H_2O_2 [from (a)]. (iii) The Fe³⁺MP-8 is oxidised degradatively by H_2O_2 in a parallel non-catalytic reaction [from (b)].

Bruice *et al.*⁵ have noted that O–O bond cleavage in the Fe³⁺ (porphyrin)·(H₂O₂) complex can proceed either by homolysis giving an oxo-iron(iv) porphyrin and a hydroxyl radical (OH[•]); or by heterolysis with formation of an oxo-iron(iv) porphyrin cation radical plus H₂O. The OH[•] radical oxidises ABTS to ABTS⁺ with 58% efficiency.⁷ Thus, the argument in favour of a heterolytic O–O bond cleavage is supported by our observation (e), that carrying out the reaction in the presence of 0.1 mol dm⁻³ bromide ion {at [H₂O₂] which gives ~50% efficiency of ABTS⁺ formation (1 × 10⁻⁴ mol dm⁻³)} does not lead to increased efficiency of ABTS⁺ formation. Rush and Koppenol⁸ have argued that since the bromide ion in the presence of OH[•] radicals forms the bromine radical (Br[•]), and this species oxidises ABTS

with an efficiency approaching 100%, the lack of effect of bromide ion in model systems is evidence against OH[•] radical participation. Additionally, the absence of formate ion effect on the reaction kinetics provides strong supporting evidence against a reaction pathway involving significant OH[•] involvement.⁸ Our experimental observations thus strongly support heterolytic cleavage of the O–O bond in the obligatory Fe³⁺MP-8 (H₂O₂/HO₂⁻) complex to give an oxo-iron porphyrin π cation radical, a direct chemical model for peroxidase cpd I.

The product of reaction between MP-8 ($1 \times 10^{-6} \text{ mol dm}^{-3}$) and stoicheiometric amounts of H_2O_2 in the absence of ABTS also exhibits spectral changes consistent with the formation of a peroxidase cpd I analogue, $\lambda_{max.(Soret)}$ showing a small, but significant, change from 396.6 nm (MP-8) to 395.2 nm (product) (*cf.* horseradish peroxidase: 406 nm, horseradish peroxidase cpd I: 405 nm),⁹ while the intensity of the Soret peak decreases to about 60% of the value for MP-8. Changes of the latter magnitude have also been found on reaction of stoicheiometric amounts of H_2O_2 with monomeric deuteroferrihaem, and ascribed similarly to a peroxidatic intermediate which is preceded by formation of a Michaelian complex [designated Fe³⁺(H_2O_2/HO_2^{-}) MP-8 in this study].^{10.11} Addition of higher concentrations of H_2O_2 result in increasingly rapid and irreversible oxidative haem destruction.

The system reported here provides a linkage between the non-aqueous and aqueous model system studies of Traylor⁴ and Bruice,⁵ respectively, in that the proximal histidine effect utilized in the former work is combined with the aqueous phase non-aggregation properties of the catalyst in the latter system. This allows the mechanism of peroxidase cpd I formation to be studied in aqueous solution with a structurally relevant catalyst possessing an axial (proximal) histidine. A further point of importance is that since a series of discrete microperoxidases can be prepared from MP-6 up to cytochrome-c itself, the system provides a means whereby the relative effect of protein and solvent on the reaction kinetics can be studied from essentially 'naked' active site (MP-6) to fully enfolded active site (cytochrome-c).

Received, 4th August 1989; Com. 9/03336J

References

- 1 G. M. Clove, M. R. Holloway, C. Orengo, J. Peterson, and M. T. Wilson, *Inorg. Chim. Acta*, 1981, **143**, 56.
- 2 H. M. Marques, Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 1986.
- 3 H. M. Marques, D. A. Baldwin, and J. M. Pratt, S. Afr. J. Chem., 1988, 41(2), 68, and references cited therein.
- 4 T. G. Traylor, W. A. Lee, and D. V. Stynes, *Tetrahedron*, 1984, **40(3)**, 553.
- 5 T. C. Bruice, M. F. Zipplies, and W. F. Lee, *Proc. Natl. Acad. Sci.* USA, 1986, **83**, 4646.
- 6 R. E. Childs and W. G. Bardsley, Biochem. J., 1975, 145, 93.
- 7 B. S. Wolfenden and R. L. Wilson, J. Chem. Soc., Perkin. Trans. 2, 1982, 805.
- 8 J. D. Rush and W. H. Koppenol, J. Am. Chem. Soc., 1988, 110(15), 4957.
- 9 H. K. Baek and H. E. Van Wart, Biochemistry, 1989, 28, 5714.
- 10 D. Portsmouth and G. A. Beal, Eur. J. Biochem., 1971, 19, 479.
- 11 P. Jones, K. Prudhoe, and T. Robson, *Biochem. J.*, 1973, 135, 361.